Арм. А500С ф10
$674
0.8 %
Катанка ф6,5
$652
0.9 %
Лист г/к 4
$705
-0.9 %
Лист х/к 0,8-1
$955
0.0 %
Лист оц. 0,55
$1220
-0.2 %
Труба э/с 89х3,5
$621
0.8 %
Уголок р/п 63х5-6
$694
-0.8 %
Швеллер 12
$848
-0.3 %
Балка 30Б1
$1056
0.0 %
меню

Российские ученые предложили доступную альтернативу редкоземельным магнитам

Исследователи добавляли к ферритовым частицам оксид висмута или оксид бора в различном количестве, а затем полученную смесь формовали и спекали при 900°C. 

  • Размер шрифта
  • ПросмотровСегодня: 162 Всего: 162
  • Комментариев: 0Добавить комментарий

С помощью новой технологии российские ученые впервые получили материал для изготовления более стабильных постоянных магнитов, способных заменить дорогостоящие аналоги с редкоземельными элементами. Разработка перспективна для применения в электронике, аудио- и бытовой технике, а также автомобилестроении и промышленности.

Постоянные магниты широко используются в электронике, медицинской технике, датчиках, генераторах, системах управления двигателями, различных механизмах автоматизации, для упаковки и удержания металлических деталей. В зависимости от назначения магниты чаще всего изготавливаются из сплава неодим-железо-бор или гексагональных ферритов бария или стронция. Неодимовые магниты — наиболее мощные, но ферритовые значительно дешевле, доступнее и устойчивее к химическим воздействиям и коррозии. Сейчас актуальной задачей является улучшение характеристик ферритовых магнитов, чтобы заменить ими неодимовые.

Исследователи НИТУ МИСИС и Института общей и неорганической химии им. Н.С. Курнакова РАН предложили свою альтернативу дорогостоящим редкоземельным магнитам. Сперва они получили порошок из нанопластинок гексаферрита бария дисковидной формы, обладающий высокой коэрцитивной силой — величиной напряженности внешнего магнитного поля, необходимой для перемагничивания вещества.

«В среднем коэрцитивная сила коммерчески доступных и широко используемых марок ферритов бария составляет до 4 кЭ, реже — 5 кЭ. Полученный нами порошок обладает коэрцитивной силой 5,6 кЭ, благодаря чему превосходит большинство известных аналогов», — отметил к.т.н. Андрей Тимофеев, доцент кафедры технологии материалов электроники НИТУ МИСИС.

Чтобы получить магнит, порошок нужно спечь — подвергнуть высокотемпературной обработке (1100-1300°C) для формирования объемного керамического изделия. При этом частицы начинают срастаться, а их размеры — увеличиваться, что приводит к уменьшению коэрцитивной силы. Для решения этой проблемы исследователи применили технологию жидкофазного спекания, при которой ферритовый порошок предварительно смешивается с легкоплавкой добавкой. При нагреве она становится жидкой и заполняет поры между твердыми частицами, способствуя их перераспределению и уплотнению. После охлаждения жидкая фаза затвердевает, формируя плотный и прочный материал.

Исследователи добавляли к ферритовым частицам оксид висмута или оксид бора в различном количестве, а затем полученную смесь формовали и спекали при 900°C. Несмотря на некоторый рост размеров частиц, были получены прочные керамические образцы, сохранившие коэрцитивную силу на высоком уровне — 5,3 кЭ.

«Ученые давно пытаются улучшить магнитные характеристики гексаферритов с помощью различных методов. Уникальность нашей разработки в объединении нескольких технологий. Первая — получение нанопластинок гексаферрита определенной формы, которое требует специальных условий синтеза. Вторая — низкотемпературное спекание, с помощью которого получается керамика с сохранением магнитных параметров исходного порошка. Данный материал в дальнейшем может быть использован для создания более эффективных ферритовых магнитов», — сказал к.т.н. Андрей Миронович, доцент кафедры технологии материалов электроники НИТУ МИСИС.

Подписывайтесь на наш телеграмм-канал чтобы получать актуальные новости и аналитику рынка стали и металлургической промышленности.
Комментарии
close



максимум 1000 символов

Новости цветной металлургии
Главные новости ГМК